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Abstract 

We present the details of a study of the matrix elements of local op- 

erators in the Unruh vacuum for real massive scalar fields in arbitrary 

d-spatial dimensions (also the Casimir effects for an infinite plane con- 

ductor). This state produces negative expectations for renormalized 

operators such as $a and Twy with the structure of thermal corrections 

where the temperature is a local Hawking temperature. We trace this 

to the lack of precise boundary conditions for the theory on the horizon. 

Though the Minkowski vacuum appears to be populated with Rindler 

particles, it produces the general coordinate transform of the Minkowski 

results ss dictated by general covariance. A simple corollary is that bro- 

ken symmetries are not seen to be restored at large acceleration; the 

dynamical interpretation of this fact by the accelerating observer is sur- 

prising. 
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I. Introduction 

Coordinate systems possessing horizons lead to certain familiar ambiguities in 

the definition of a quantum field theory [l, 21. One may consider a collection of 

observers comoving in such a coordinate system (tacked down to some fixed val- 

ues of the spatial coordinates; such observers cannot all be freely falling; examples 

include the comoving observers in Schwarzscild, static desitter and Rindler coordi- 

nates). We attempt to define a Hamiltonian, H h, which propagates the Schroedinger 

wave-functionals in the observer’s coordinate time on the horizon. However, the sin- 

gularity in the coordinate system translates into ambiguities in the definition of the 

Hamiltonian density at the horizon and hence the Hamiltonian integral across the 

horizon. 

These ambiguities do not occnr if we o priori demand that the field configura- 

tions be everywhere continuous in coordinate systems that are continuous on the 

horizon (e.g. Minkowski or Kruskal coordinates in the case of a black hole). But the 

singularity in the coordinate system at the horizon does not allow us easily to imple- 

ment this constraint in the general accelerated observer’s system. In practice, the 

horizon is at a “coordinate infinity”, while the basis functions for the D’alembertian 

operator have implicit boundary conditions, e.g. typically they are given an effec- 

tive compact support (vanish at coordinate infinity so one can consider the modes 

to be effective gaussian wavepackets to have well-defined normalization integrals). 

Consequently, the theory is only well defined in the coordinate system in which the 

horizon does not represent a singularity. If one naively ignores this inherent loss of 

information in defining the quantum field theory, one is led to a different definition 

of the theory, with a different Hamiltonian and groundstate. We do not propose an 

alternative approach to this dilemma here, and it is in some sense an assumption in 

the discussion of Hawking radiation that this ambiguity is a fundamental limitation. 

However, we always assume that the physical groundstate is given in the coordinate 

system that is continuous, i.e. the Minkowski groundstate. 

If one artificially severs continuity normal to some plane in flat space, i.e. neglect 

the 04.04 terms in the Hamiltonian on this surface, then the groundstate of the 

field theory will have different energy than the usual Minkowski vacuum. This 
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owes to the singular field configurations (whose normal derivatives to the plane are 

nonexistent) which previously had zero amplitude of being found in the vacuum 

now becoming active and establishing a new groundstate. This is the basis of the 

familiar Cssimir effect. In fact, this is effectively what happens in the singular 

coordinate system and leads to the Unruh vacuum being physically distinct from 

the Minkowski case. The formal resemblance of the Unruh matrix elements to 

those of an infinite plane conductor in Minkowski space with Dirichlet boundary 

conditions are striking, and we have evaluated the latter (and Neumann conditions) 

as well, for comparison. 

We consider a singular coordinate system in flat space describing a comoving en- 

semble of accelerated observers given by the coordinate transformation to “Rindler” 

coordinates 13, 41: 

t = o-l &sinh(aq) (1.1) 

z = a-l e”(cosh(at)) (2 ’ 0) (1.2) 

ZJ. = 2: (1.3) 

where (-oo < q, [ < oo). We will presently restrict our attention to the “right hand 

wedge” corresponding to z > 0, though it is straightforward to extend the results 

to the double wedge case. Eq.(1.3) describes observers of fixed [ accelerating with 

proper acceleration given on the t = 17 = 0 time slice by ae-“{ = l/s, and elapsed 

proper time vent. The metric in Rindler coordinates is given by: 

da2 = czaE(d$ - d(‘) - dz’: (1.4) 

Presently we will adopt a covariant functional Schroedinger description of the sys- 

tem as developed in ref.(5). We refer the reader to ref.(5) for the formal details. An 

equivalent approach might be to construct the appropriate Green’s functions [S] in 

the Unruh vacuum and extract local matrix elements from these. 

As stated above, the physical vacuum is always the usual Minkowski one, and 

operator matrix elements simply transform covariantly to the accelerating frame. 

Thus, since (@) is zero (upon renormalization), it will always be measured to be zero 

by any observer. The novelty is that the Minkowski vacuum is not the groundstate 

of the Hamiltonian which propagates wave-functionals in Rindler time, 7 (rapid- 

ity); indeed, the groundstate of this object is the so-called “UnruhZ vacuum. The 
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Minkowski vacuum appears to be full of Rindler particles in a coherent configuration 

when it is compared to the Unruh vacuum. Moreover, the particle number opera- 

tor, in momentum space, which annihilates the Unruh vacuum has the expectation 

distribution of a Bose gas of temperature 5, where a is the dimensional parameter 

defining the Rindler coordinate system. This number operator is a globally defined 

object (in Rindler momentum space) and this result is symptomatic of the global 

ambiguities described above. We emphasize that the local operators are unambigu- 

ously defined and result in the usual covariant matrix elements when evaluated in 

the Rindler mode representation of the Minkowski vacuum. This explicitly verifies 

the covariance of the formalism of ref.(5). 

However, if we compute locai operator matrix elements, such as (4’) in the 

Unruh vacuum, we find that they are not covariant transforms, but develop generally 

negative “thermal” corrections. For example, we show that (4’) becomes ~ g in an 

“high temperature limit” where T is the local Hawking temperature given in terms 

of the local proper acceleration (at t = n = 0 we have T = &j. Thus, it is the 

difference between the value of the operator in the Minkowski vacuum and that in 

the Unruh vacuum which appears as a positive thermal effect. 

This leads us to question the usual interpretation of acceleration radiation. Since 

all experiments are essentially local probes of physical systems (detectors, ther- 

mometers, etc.) and since the local operator matrix elements are just the covariant 

transformation of their Minkowski values, there will occur no observable effect in 

the vacuum as a consequence of acceleration. For example, if a field such as C$ devel- 

ops a vacuum expectation value associated with symmetry breakdown, then even 

accelerating observers should measure this value. Thus even at very high Hawking 

temperature there is no restoration of the broken symmetry. This raises an interest- 

ing dynamical paradox resolved in ref.(i’) and herein (see Secition (1II.B)) as to how 

the accelerating observer can conclude that the state is a minimum of the effective 

potential when it appears thermally excited relative to his definition of groundstate 

(the Unruh vacuum). 

It should, however, be emphasized that this is the “alibi” point of view, whereas 

Unruh originally considered the “alias” viewpoint [Z]: accelerated objects may in- 

deed become thermalized as a consequence of the equipartition of the energy re- 

quired to accelerate them by quantum mechanics. However, local physics is com- 
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pletely well defined by the Lagrangian dynamics of the lab observer. We emphasize 

this point in light of recent suggestions that the “Unruh effect” might be observable 

by rapid acceleration of electrons: one will only be testing the usual low energy 

theorems of QED (or general covariance!). 

Our contribution in the present paper is to evaluate these matrix elements in a 

fully general real massive scalar field theory in d + 1 spacetime dimensions. Anal- 

ogous calculations have only been carried out previously for the “conformal” TLIy 

in a massless theory in 3 + 1 spacetime for an accelerated mirror 181. These results 

become identical to ours in the high acceleration limit. The massive theory must be 

considered in tota due to infra-red singularities involving mass insertions. The mass 

terms are important for evaluating the effective potential in the Unruh vacuum, as 

discussed in Section III. We encounter a relatively arcane system of integrals in 

this study, i.e. the Kontorovich-Lebedev transform integrals of products of Bessel 

functions with respect to order. The Minkowski vacuum matrix elements involve 

tabulated Kontorovich-Lebedev transforms, while the Unruh vacuum expectation 

values involved a somewhat tedious analysis of an integral which can be given only 

in a quadrature. The high temperature limit reduces to simpler familiar results [8]. 

A number of other useful integrals are tabulated in Appendix A. 

Section II contains the details of the matrix element evaluation. The casual 

reader who is only interested in some discussion of results should proceed to Section 

III. 

II. Local Operator Matrix Elements 

A. Evaluation of (I$“) 

Presently we compute (V) for a real scalar field of mass m in the Minkowskivacuum 

state, including the effects of a wall located at z = 0 with Dirichlet or Neumann 

boundary conditions imposed upon 4, and in the Unruh vacuum for accelerating 

observers in the +z direction. Because of the preferred axis in these problems 

and for lack of a better regulator in the Unruh case we will choose to point-split 

in the z direction. We will see that the infinities are unambiguous and that our 

subtraction procedure (or operator counterterms) is the same in both cases. The 
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matrix elements will differ by infra-red effects which have the superficial appearance 

of thermal terms, but which reflect the implicitly differing boundary conditions 

imposed upon the scalar field. 

The Minkowski vacuum wave-functional can be written in momentum space, 

upon singling out the z-axis: 

Q.M = exp { -4 J dk,dd-lkl / a(k,, kL) I2 dm} (2.1) 

where the a(k., k,) are c-number Fourier coefficients in an expansion of the field 

configuration at any instant of time: 

4(z) = /,- dk$J ;$eik- a(k.,k,) ( 1; ::I) ( ; ) (2.2) 

(recall that in Schroedinger picture the fields are generalized coordinates and carry 

no time dependence, which is carried by the wavefunctional; we do not indicate 

the time dependence which is irrelevant presently; we are free to go to the Fourier 

coefficients as the coordinates of the system). Here we’ve indicated in the upper 

(lower) component the appropriate expansion for Dirichlet (Neumann) boundary 

conditions on the field at z = 0 abbreviated as D (N). Note that the longitudinal 

momentum integrals range from (0, co) while the transverse (1) integrations range 

from (-00, co). For a real scalar field the coefficients satisfy the reality constraint, 

a(kz,k,) = a@,, -k,). 

Consider now the matrix element: 

(tgz + g$(z - ;,) = J dk,dp.dd-‘kLdd-‘p~ 22-d?r-d 

sin k.(z + G)sin k.(z - i) 

cos k.(z + ;)cos kz(.z - ;) 
(2.3) 

. {a(k,, k&(p.,p,)) eihL’zL+ipL.=L 

The expectation value is to be taken in the wavefunctional of eq.(2.1). We have: 

(4kz,kMpz>pd) = Jm ~~,(~)a(k,,ki)a(p,,pl)~~(~) 
= 6(kz - P,) bd-‘(ki -PI) 

2(k;+k:+d)f 

(2.4) 
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The functional integral is most conveniently evaluated in momentum space: 06 + 

n, da&a (this requires some care in avoiding double counting in light of the the 

reality constraint on a(k., k,) and there is also a 6(k, + p.) term which is inactive 

since k,,p, > 0). Thus, using eq.(2.4) we obtain: 

(+qx + ;)r$(x - ;)) = /(2qddic,dd-‘kl (k; + k: + m’)-’ 

cos k,c-cos 2k,z 

cos k,c+cos 2k,z 

(2.5) 

We now make use of the elementary integrals: 

J & (k” + ,+ = (4=)-:(~?~p+lr(~~-~~~) 

and the d-dimensional solid angle: 

J d& = $$ 
2 

to perform the integration over kl: 

(+ + $+ _ ;,> = /gm&, 2-d-2n=+P(l -a) (k: + ‘r@ 

Upon further use of: 

cos k,c-cos 2k.z D 

cm k,e+cos 2k.x N 

~mcos(xy)(x2 + az)Pdx = ($--” &+(“Y) 

or equivalently: 

J 0 
- dk.(k; + m*)-l+d ~cos(k,u) = ($-)? r(lfq)h+(au) 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

and some simplification we arrive at the result: 
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(+ + ;)+ - ;,> = 2-%=9 

(~)~K.~(mr)-~~)~K~(2ms) 

i (~)~K~(mc)+(~)~K.~(2ms) i 
(2.11) 

D 

i i N 

We note that the singularity of the operator & resides in the Bessel functions 

with arguments mc. The infra-red effects arise in the other terms and we note the 

change in sign upon passing from Dirichlet to Neumann boundary conditions. This 

result is, of course, equivalent to evaluating the Feynman propagator for spacelike 

interval with the indicated boundary conditions. We further note that in the Lorentz 

invariant vacuum without the presence of the wall at z = 0 we obtain the familiar 

result: 

(+ + @(x - ;)),,,e,,, = 2-%r+ I ) +-& * K+4) (2.12) 

Clearly, the short distance singular part of eq.(2.11) is not influenced by the bound- 

ary conditions, and can be unambiguously subtracted in all coordinate systems. 

Though the formalism developed in ref.(5) is covariant, it deserves verifying ex- 

plicitly as a check on the present calculation. Therefore, we presently reexpress 

the Minkowski vacuum, QM($) in terms of the Rindler modes and recalculate the 

(da). We should obtain the same result as in eq.(2.11). An arbitrary field configu- 

ration can be represented in the right hand Rindler wedge in terms of massive d + 1 

dimensional Rindler modes as [5]: 

$(x) = J dkz ,“z”;;$ P(k, k,) e”“=l R+,(s) 
where: 

R;‘(S) = i (% sinh “a”)’ K,(a-‘e”‘Jk:fm?-) 

In terms of these modes the Minkowski vacuum restricted to the right hand Rindler 

wedge can be given for the two classes of boundary conditions. This is equivalent 

to a Bogoliubov transformation in the usual formalism and is given in ref.(5) as: 
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dk,dd-lki / P(k,k,) 1’ kz ( ;;$[$\ )} (2.15) 

Indeed, QM now appears as a state full containing a Bose gas of Rindler particles 

(irrespective of D or N conditions; the full Minkowski case is similar 151) with a 

universal temperature of T = 2. 

The matrix element is as before: 

(+(z + ;)+ - ;)) = J dk,dp,dd-‘kldd-‘pl Pdcd ( P(k> kJ B(P>PL)) (2.16) 

. {R?(a) R,‘b (c2)} ~ik~‘=~+ip~‘zL 

where now: 

(P(kkl) P(P>PL)) = /Db Q%,(4) B(kkd P(P,PL)QM(~) 

= b(k, - p,) . sd-‘(kl - pI) 
2k 

(2.17) 

Here we note that ci corresponds to the t = r~ = 0 spatial Rindler coordinate 

corresponding to zi. 

Assembling the above results together and using elementary identities of hyper- 

bolic trigonometric functions we arrive at the expression: 

(4(z + ;l+(z _ ;,) = J ;;$ $ K,, (n/ea’l) IL (wa-‘ea”) 
(2.18) 

cash ~11 - 1 

cash AU + 1 

where u = $. 

We now make use of the Kontorovich-Lebedev transforms as discussed in ref.(g) 

and in Appendix A. The u-integration may be performed by use of eq.(A.l) to 

obtain: 

(+ i ;)c/+ - ;,> = J $$ 

.i 
-‘(eW - e~(~))-Ko(mla-‘(e”‘l + eQ)) 

1 

(2.19) 
KO(mla 

&(mla -l(eO” - e”~~))+Ko(mla-l(t+~ + Pan)) 
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where we use the “transverse mass”: 

ml = Jk:+m2. 

We now employ a standard Mellin Transformation: 

(2.20) 

J f& z-~(z’ + ~‘)-~“~y(aj/~) = 

where in the present case u = 0 and p = m. Also, using the d-dimensional solid 

angle and letting z; = o-ie4r; and c = zi - z2, 22 = z, + Q, we find that we recover 

identically the result: 

tdtz + ;l+(z _ a,),, = 2-dT+ 
(2.22) 

of eq.(2.11). This confirms that our representation of the Minkowski vacuum in 

the two distinct boundary condition cases given in terms of the Rindler modes 

reproduces the invariant matrix element (@). In a sense, we have transformed 

the vacuum representation by the Bogoliubov transformation, and inverted the 

transformation in recovering the invariant result of eq.(2.11). 

We now turn to the evaluation of (@) in the Unruh vacuum. This vacuum 

wave-functional is given in ref.(s) as: 

QU = exp (-; / &dd-‘ki I P(k,kl) 1’1 k. I> (2.23) 

thus having the superficial appearance of a two-dimensional vacuum state for a 

massless field theory. This is shown in ref.(5) to be the groundstate of the Hamil- 

tonian constructed in Rindler coordinates and propagating states in Rindler coor- 

dinate time. 

To evaluate (@), we repeat the steps given above in eq.(2.16) but now we have: 

(P(k,ki) P(P,PL))” = /-Db Q;(4) P(kkJ P(P,PL)%(@) 
, 

= 6(k. - P.) hd-‘(kl - pI) 
% 

(2.24) 
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Thus the analogue of eq.(2.18) becomes: 

(4fz + i)$(s - i,>, = J ~~~;~-~ $ K;, (mia-‘eurl) Ku (m~a-‘e”“) (2.25) 

. {sinh Xu} 

The nontrivial part of this analysis is the evaluation of the resulting Kontorovich- 

Lebedev transformation. This is discussed in Appendix A, eq.(A.2). The left-over 

kl integration follows from the Mellin transform of eq.(2.21). We thus arrive at the 

result: 

L--d 
m 

-2 
J (” 

z; + z; + 22122 coshw 

0 2m 

.K,+ m 
(J 

zj + z; + 2zlzz coshw 

(2.26) 

The second term on the right-hand side is nonsingular in the c + 0 limit and we 

thus are led to the result: 

($6(Z)‘)” = 2-dn-J+4 { (&)” IL+(m) 

_ 2qmd-’ Jrn 0 T2”,“w2 Qy Kq(Q) 

(2.27) 

where: 

Q = &imz Jm. (2.28) 

Thus, the singular structure is identical to that obtained above for the Minkowski, 

Dirichlet and Neumann results. The finite corrections are negative definite and 

analogous to those obtained for the Dirichlet case. This is not unreasonable math- 

ematically since the Rindler mode functions oscillate infinitely as they approach 

the horizon, while all normalization integrals have effectively a compact support. 

As such, we are implicitly forcing the field configuration of eq.(2.13) to vanish at 
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the horizon by our normalization conventions and this in turn yields the result of 

eq.(2.27) not unlike the Dirichlet result. 

Eq.(2.27) yields a more striking result when we consider it in a specific case. Let 

us specialize to d = 3 corresponding to 3 t 1 dimensional spacetime. We further 

consider the limit of small z, the “high acceleration” limit. Throwing away the 

singular c-terms we find the leading behavior: 

Oh TZ 

(l+coshw)(++wr) =-i? 

where we define the local Hawking Temperature T(z) = & where the local proper 

acceleration is given by $ (we have used the integral eq.(A.17) to obtain this latter 

result as well as the small argument limit of the Bessel function Ki(z)). 

This result is minus the usual thermal correction to the operator c$’ as is eas- 

ily verified by computing the expectation value with the thermal density matrix. 

It suggests that locally the Minkowski vacuum expectation value, which is zero 

upon subtraction, is “hot” by an amount $ when compared to the Unruh re- 

sult. Nonetheless, there is no conflict with general covariance because the result in 

Minkowski space is invariant, i.e. zero transforms into zero. It would be incorrect 

to conclude that an accelerating observer measuring (4’) obtains a thermal result 

B. Evaluation of the Stress-Tensor 

We turn now to the evaluation of the stress tensor in the various vacuum states 

described above. We focus presently upon the usual stress-tensor given by: 

Tpv = +&‘,4 - &v (a@4 - YTI~,~) . (2.30) 

We shall discuss below the conformal stress tensor given by: 

T;y = T,w - E ((4*);,w - g,#);p:) 

In Schroedinger picture the time derivative is replaced by the d-dimensional 

functional derivative: 



-1% FERMILAB-Pub-85,/100-T 

(we remark that this quantity transforms as a vector and the representations in 

terms of Rindler modes used below will automatically contain the Lorentz trans- 

formation to those coordinates). The component forms become in the Minkowski 

coordinates (we consider presently only those components which produce nonvan- 

ishing matrix elements) with the point split arguments: 

1 62 

To0 = -z6q+(z,)6qq2,) 2 
+ %#+1)&#+z) 

+ a (+,b(=,) . +?,~(zz) + m24(44(4) 

1 62 
Tzz = -26+1)6~(22) 2 

+ h$(+L4(4 

- ; (*il+(zI). ffLd(Z2) + &(44(4) 

(2.33) 

(2.34) 

1 62 
TLL = -z6~(z1)6~(z2) 2 

- hJ(Zl)vr4(~Z) - 

(2.35) 

where II refers to any spatial direction perpenticular to z. We note that in flat 

space the point-split operator is a covariant bilocal, though in curved space there 

are necessary parallel transport factors associated with the split to maintain general 

covariance. 

The computation of (T,,) in the vacuum states with Dirichlet or Neumann condi- 

tions is straightforward. The only novelty is the computation of ( 619(z,$+t2zj) which 

we now sketch. In analogy with the expansion of eq.(2.13) we have the canonical 

momentum represented in terms of Rindler modes as the functional derivative: 

6 
-iw = -i 

dk dd-‘kL 

= (27r)‘+ V&d 
eikL’LLRk,(<) (2.36) 

Hence we have for ( ,,,,,$m,zll): 
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/ 
DWu(4)’ 

62 

~O(~)JP(P) 
~“(4) = -; 6(k, ~7 p.) bd-‘(kl - ~1). (2.37) 

and factors of coth(E) and tanh(E) for the Dirichlet and Neumann cases respec- 

tively. Thus we obtain the expression, upon carrying out trivial integrations over 

delta functions: 

62 

W(+v(4 (2.38) 

(P*K+L~lbyml~2)) 

and cash($) ZIG 1 replaces sinh( y) in the (D,N) cases above. The p integration may 

be performed by the use of eq.(A.lG) in the Unruh case and eq.(A.14) and eq.(A.15) 

in the D and N cases. The kL integrals are those of eq.(2.21) which yields the results 

quoted in appendix B. The remaining matrix elements are similar, though somewhat 

tedious to evaluate. Rather than display the computations explicitly we quote the 

results and the interested reader may find all of the necessary technical ingredients 

collected into Appendix A and results quoted in Appendix B. 

The results of Appendix B allow us to write for the renormaiized canonical stress 

tensor: 

{(3d-l- (l-d)coshw) Q-K+(Q) 

+((3 +-hw)Q2 - 2 P(w)(l + coshiJ))Q=+&(Q)} 

and: 
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T,, = _2-d-' x.=q (&> + ( d A+(mr) it melt-+nc)} 

(2.40) 

./ o- (AJ’) U- d+3-(l-d)coshw) Q=+%+(Q) 

+((-I +coshw)Q* - 2 P(w)(l + coshw))Q+K+Q)} 

and: 

T,, = 2-d-’ ==$+ 

--I-d 
f2-d-2 *L$Zd z 

( > 
-%- - 

. (-2(1- d;+(z-z) + hzK+nz)) ( ; j 
(2.41) 

-2y ,qml+d 

4 o- (Ad’) I(- 
- 3d + 5 + (1 - d)coshw) Q-:-+(Q) 

+((-3 - coshw)Qr - 2 P(w)(l + coshw))Q=%+(Q)} 

where Q and P are defined in eq.(B.3). Here the lines containing the symbol 

refer only to the Minkowski vacuum with Dirichlet or Neumann condit;ons.‘The last 

lines in each formula containing the integral expression refer only to the Unruh case 

(do not add the former to the latter). We see that the short distance contributions 

are, as expected, universal and the differences between the various cases occur only 

in the infra-red. An alternate expression of the form: 

(T,w) = Ag,v +B rlrvu + C P,,P~ (2.42) 

is given in appendix B, in terms of the instantaneous surface normal vector, n,, and 

the proper acceleration vector, p,,. 
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The computation of the conformal stress tensor (here we mean that which occurs 

when the scalar is conformally coupled to curvature, but we generally include a mass 

term as well; the true tree approximation conformaily invariant case occurs when 

the mass is taken to zero) involves additional operator expectation values. These 

are discussed and listed in Appendix B and may be assembled into final expressions 

for the conformal stress tensor: 

( > 

-I--d 
y. = -2-d-l T=p 6 

2m 
- Kd+(mt) 

F 
2-d&2 x+ z + 4mz 

i-> m 
7 K+d (Zmzj 

D 

i 1 N 

-2+ ,+,l+d 

-J 0-c d+l+(l-d)coshw)Q=+--l--d(Q) 

2+d 
+Fj- + ~coshw)Q2 - 2 P(w)(l + coshw))Q+K+Q) 

and: 

T’ = -2-d-l n+ 
zz 

(y+{ d K+ (mc) + md+a (me)} 

+o 
D 

i 1 
N 

-2+ ,+,l+d 

,J o- (79 fL$, ( (-d+l++d-;)coshw)Q++(Q) 

+((--I + coshw)Q’ - 2 P(w)(l + coshw))Q=+%+(Q)} 

(2.43) 

(2.44) 

and: 
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(-d + 1 + $ - (3 - d - ;) coshw) Q=+=%+(Q) 

y coshw)Q’ + 2 P(w)[ 

and the alternate form: 

(T;,) = A’ srru + B” vpvv + Cc prpv 

(2.45) 

(2.46) 

is given in Appendix B. We see that the singularity structure of the conformal stress 

tensor is identical to that of the canonical tensor reflecting asymptotic conformal 

invariance at short distance. We shall see subsequently that the conformal tensor 

is traceless module mass effects. None of these cases will contain trace anomalies. 

III. Discussion of Results 

A. Leading Structure of Stress Tensors 

Presently we discuss the structure of these results and give a physical interpretation. 

As we’ve seen in eq.(2.29) the leading (high temperature or small x) behavior of 

(@) is given for d = 3: 

T=l 
2nz (3.1) 

What about the analogous results for stress-tensors as obtained in the preceding 

section? 

First we examine the leading behavior of (Too), the conventional stress tensor. 

We drop the universal short distance contribution, corresponding to renormalizing 
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(T,,“) to be zero in flat coordinates [or zc:o in the limit of no acceleration). The 

Unruh expectation value gives: 

(Too) = - & ,(- c,l~,2, [Q-%(Q)@ + coshw)] 

+ Q3K1(Q) $(3 + coshw) - P(w)(l + coshw) 1 (3.2) 

1 - J dw -- 
8+2’ o (rr’ + d)(l + coshw)2 

. 4 + cash w - 2((“;“,;;:) (1 + cash w)] 

(3.4) 

using the small argument limits, Kr(Q) + l/Q and K*(Q) + 2/Q’ for small Q 

(and we’ve already used K, = KY). Thus, making use of the integrals tabulated 

in eq.(A.17 - A.19) we have: 

(Too) --t 48& = -1laT’ (3.5) 

where the Stefan-Boltzmann constant a = $ is occurs. 

The conventional stress tensor for a scalar does not yield the usual Stefan- 

Boltzmann constant in the Unruh vacuum for the conventional stress tensor. This 

is not too surprising since this constant is the result of a geometric integral which is 

rotationally invariant in the usual thermal ensemble, but which is not rotationally 

invariant in the present case, a point which has been emphasized previously in 

ref.(5). Furthermore, the conventional stress tensor is not formally traceless in the 

massless limit and does not closely resemble the case of radiation. 

The conformal stress tensor can be evaluated similarly and yields a more pleasing 

result which we quote: 

(Go) + -480;2z4 = -aT’ (3.6) 

This is consistent with the calculation of ref.(E). Thus the Unruh vacuum produces a 

singular energy density on the horizon which has the structure of thermal corrections 

but with the opposite sign. Moreover, we see that the leading behavior of the 

conformal stress tensor is that of radiation, TL, - -aT’ diag (1, -i, - +, - +) in the 

sense of tracelessness. 
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B. Mass Corrections and Effective Potential 

Our results are sufficiently general that they allow a discussion of the mass correc- 

tions to the energy density, and therefore, the effective potential. We give presently 

a very sketchy discussion; some of the ideas have been previously discussed in ref.(7). 

The effective potential can be understood as a variational calculation in the 

Schroedinger picture. One constructs a gaussian wavefunctional centered about 

some “classical” field configuration, & (which is considered to be O(1) in an expan- 

sion in powers of fL). The wavefunctional is given an arbitrary mass parameter, p 

and one computes the expectation value of the Hamiltonian in this state with some 

regulator ‘scheme. Then, this regularized expression is varied with respect to the 

parameter p to obtain a “mass-gap” equation for CL. The solution to this equation 

may be substituted back into the regularized expression for the energy. Then the 

result is renormalized to obtain the effective potential to order tL. This information 

is implicit in the stress-tensor expectation values obtained above. 

In thermal equilibrium we consider a state centered about the classical minimum 

of the potential, but described by a thermal density matrix. We can then extract 

the finite temperature contributions to the energy expectation value in a high tem- 

perature expansion. The analyses given by Weinberg, Kirzhnitz and Linde, and 

Dolan and Jackiw [lo] contain essentially this idea, but the technical methods of 

evaluating effective potentials vary. We have encountered a sublety here however in 

that to recover the results of [lo] we must assume that the mass appearing in the 

density matrix is a constant, independent of &, rather than the solution to the mass 

gap equation. If we use the full solution to the mass gap equation the numerical 

coefficients change, but the physical conclusion of the section remains unaltered. 

We may compare our calculations of the energy density in the Unruh vacuum to 

these finite temperature analyses. We consider presently a field theory with Hamil- 

tonian density (Too; we could also add corrections to this in the case of conformal 

coupling): 

H = ; 2 + (v+)* - 
1 

Choosing to compute in a wavefunctional centered about 4, is equivalent to shift- 

ing 4 -+ I$ + 4, in eq.(3.7). Furthermore, terms linear in 4 will produce vanishing 



contributions to the energy expectation value and may be dropped. The result- 

ing quadratic Hamiitonian to order $? in the quantum fluctuation after shifting 

becomes: 

(Vi)‘? L (pLz)yj 

where p’ = Pm2 t X&:/2 is the mass of the quantum field Q. ht this point we 

can use the leading behavior of the stress tensor component, Too as defined above 

to evaluate the Unruh expectation value of the kinetic terms, (n2 + (DQ)‘) and 

the behavior of (4’) - 5 to obtain the effective thermal potential, which is in 

agreement with the results of ‘101 for the coefficient of the X&T’ term, but bus 

opposite sign! 

Is this the correct procedure or should we consider a full expansion of the stress- 

tensor matrix elements obtained in Section II? In the Unruh vacuum the leading 

behavior of the expectation value of the energy density of eq.(3.8) follows from 

the leading plus next to leading terms in the expansion of the stress-tensor matrix 

elements: 

(T&) = -Al-= i,2ywz, [Q-‘&(12)(2 -c-W] 

$(5 - coshw) - P(~s)(l f coshw) 
1 

13.9) 

-3 (leading terms) 

2 - 
J 

dw -__ 
48Pr222 0 (r’ + &)(I + coshw) 

-1 + 2coshw - 
6(3~u.’ - n’) (1 + 

(w’ + 7ry 
coshw) ln(l + coshw) 1 

(3.10) 

We note that the last term would integrate to zero without the log factor (hence 

the i-(‘T’ factors in the argument of the log do not contribute; this latter integral 

is given in eq.(A.20)). These expressions involve the mass-gap, p* and lead to a 

different result for the coefficient of the X@T’ term. This is not surprising because 

these terms include the mass insertion in the kinetic term loop, which is absent in 

our naive estimate above in which only the leading behavior of the kinetic terms is 

kept. These terms may be somehow neglected in the analyses of ‘101, but we feel 
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it merits a closer scrutiny of the Schroedinger picture description of the thermal 

effective potential to understand the correspondence with the standard treatments. 

Thus we obtain for the effective potential to this order: 

(H) = -2g + g - AT’ - B#T4 (3.11) 

where A is the Stefan-Boltzman constant in the case of the conformal tensor and we 

find from eq.(3.9), B = $$ while the “naive” estimate gave B = A. Of course, these 

terms will vary with the definition of the Hamiltonian as does the Stefan-Boltsmann 

constant in going from the conventional to the conformal stress-tensor. 

This latter result shows that there is no critical Ifawking temperature above 

which symmetry is restored in the Unruh vacuum. This is the principal result of 

this section. As one increases T one simply drives the system deeper into a broken 

symmetry state. Moreover, since the Minkowski vacuum produces the usual T = 0 

result for the effective potential, we see that it is more in the direction of increasing 

the symmetry, hence consistent with the interpretation that it is full of a thermal 

distribution of Rindler particles. Thus, we see that symmetries are not restored as 

seen by accelerating observers (a fundamental consequence of general covariance) 

and that this is consistent with the dynamics as interpreted by the accelerating 

observer. 

C. Conclusions 

We have given a complete discussion of the interesting local operator matrix 

elements in the Unruh vacuum and a short study of the effective potential and 

its correspondence with thermal results. We may amplify this latter discussion 

elsewhere. 

We conclude by emphasizing that the Unruh vacuum is a fictitious object (emu- 

lating the Boulware vacuum in Schwarzschild geometry). Though matrix elements 

differ between the Minkowski vacuum and the Unruh vacuum, all physical mea- 

surements will produce the usual results given by the Minkowski vacuum suitably 

transformed to the observers local coordinate system. There is therefore no phys- 

ical manifestation of the “thermal distribution” of Rindler particles seen by the 
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accelerated observer (e.g. no stress-energy, etc.). Nonetheless. it is striking that 

the difference in the matrix elements of the two vacua has the general structure of 

thermal behavior. 

We remark that we are concerned about how these fictitious effects are in fact 

separated from the physical effects in black-hole evaporation. Unfortunately, an 

exact treatment of gravitational collapse is formidable. The usual quasi-intuitive 

discussions of Hawking radiation are not sensitive to these subtleties and potentially 

misleading. 

Appendix A: Integrals 

Presently we derive two results: 

/ 
~mcosh(wz)X,,(u)K,,(v)dz = ;Ko(Ju.’ + Y* + 2uucosw) 

and: 

/ 0 m sinh(wz)K,,(zl)Ki,(v)dz = ~K~(J u2 + Y2 + 2uv cos w) 

- 2w 
/- 0 W2~ZZK~(~~z+v~+2u~cosh~) 

(A.11 

(-4.2) 

Eq.(A.l) is standard (see ref.(g)) h’l w t e we have not previously encountered the 

representation of eq.(A.2). 

Consider first the integral, 

IO = 
/ 
Om dz P=Kiz(u)K,,(v), 

where U, V,‘J are real positive variables. We may use MacDonald’s representation: 

K,,(u)K,(v) = i/,- exp -i - “‘2: “r) K, !y) t-‘dt (A.4) 

and the standard integral representation: 

K,(z) = a irn exp (-50 + 1-l)) IF‘-‘dl l&(z) > 0. (A.5) 
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ix -----l-------------- iw 

*. 

--l-------------- -ix 

Figure 1: Complex z-plane and Ci contribution 

So we have: 

IO = i m exp J ( t 112 + Y2 
4 0 

--wz--- 
2 2t 

l-“-l t-‘dl dt dz (A.6) 

Consider the z-subintegral: 

/ 
om & 1+-u= = 

I 
Om dz e-(W+‘h’)” = l 

w+ilnl (A.7) 

which is valid for real positive w,l. However, by analytic continuation we may use 

this as a definition for negative omega, provided we are careful to account for a pole 

which crosses the real-l axis. If the l-plane cut is chosen to lie on the negative real 

axis, we may convert to the variable z = ln[ and we are led to the integrals: 

.I* = - d1 I o -i- &..-‘2 yf z: e-“(l+‘-‘l 
( 1 (A.8) 

1 dz dz 
=z c,-w+ize / 

-Zaconhr * 1 
/ 

~c-lacO’h. 
2 c, w + iz 

where the contours and cut structure are displayed in the complex z-plane in figures 

(1) and (2). 

We write the first term above in terms of an integral along Ci and a pole con- 

tribution: 

1 J* zz ne-z=c-w + - 2 c & e-kC08hZ 

J, 
’ k 1 

-w+iz w + iz (A.9) 
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I irr 
--------------_ -------------- 

-iw 

c2 
--------------- ---------~---- 

-in 

Figure 2: Contour Cr contribution lies below pole when eq.(A.7) is analytically 

continued. 

Thus, with a change of variable, z’ = --z we obtain: 

J, = 71c-2aco.w 

while for J- we simply are left with the uncancelled Ci contribution: 

(A.10) 

J- = Te-20co.u _ 

/ 

- 2~ dr e-zacosttr 

0 wz + 22 

Substituting these results for the relevant subintegrals in eq.(A.G) and making 

use of the standard integral representation of eq.(A.5) yields the results of eq.(A.l) 

and eq.(A.2). 

These results lead to the following corollary results which are used in the calcu- 

lations of this paper: 

/ o-cOsh~Z K,.(u) K,,(v) dz = ; K,,(l 1~ -v 1) 

/ 
omsinhm K;,(u) K,,(v) dz = i K,,(j u -V 1) 

- /- II z2T,““,2 K,, (@ + uz + 2uv cash z) 

/ 0 
m~Zcoshnz K,.(u) K;,(v) dz z -? 2 ,u~vlW-~/) 

(A.13) 

(A.14) 



-24- FERMILAB-Pub-85/100-T 

i 
- 2 

2 Eli. K,(, dz= ” lLzI 
0 

,I{](~ u T u !) 
2 /u+q 

(A.15) 

/ 
mxZ sinh?rz&(u) &(v) dz= -I? u” 

0 
,Ii,(i u--z) i) 

2 lu--vi 

J 

- 2n(3zZ - ZT’) dz 
(A.16) 

+ & (J uz + u: f 2uv cash z 
0 (2’ + ?+)3 1 

In evaiuating the leading behaviors in d=3 we have required the following inte- 

grals which follow by consideration of the appropriate contour integration: 

dz x 

x1+ z’)(l i cosh7rz) = 12 

dz 11x 
(1 + x2)(1 + coshm)2 = - 360 

(3z2 - 1) dz 73 

(1 + t~*)~(l fcoshm) = -240 

(3~9 - 1) ds lln3 
(1+x2)3(1+COShK5) ln(l+coshKx) = -720 

(A.19) 

(A.20) 

where eq.(A.lD) can be obtained in terms of eq.(h.18..4.17) by a trick and eq.(A.20) 

follows from eq.(A.l8) upon a double integration by parts. 

Appendix B: Stress-Tensor Matrix Elements 

Here we quote the results for matrix elements involved in the evaluation of the stress 

tensor. 

We note that (Vi~(z~)Or~(z~)) is most conveniently obtained by differentiation 

oftheprevious expression for ($(z~)c$(Q)) while ((‘?,$(z,) ‘?14(~Z) T ~~~(z~)~(z~))) 

requires directly evaluating: 

; ((bw G,dJ(z*) f m*4(z*)4(xz))) = 
WI 



-25- FERMILAB-Pub-85/100-T 

in the Unruh case and with the appropriate replacement of sinh( y) by coth( y) or 

tanh(y) in the D or N cases. 

We obtain the results for the basic operators: 

--L--d 
-?- K+d(mc) 

6’4 

-#&+I OJ I 0 
szd+ww,P(w)(l + coshw)Q* Kc(Q) 

where: 

P(w) = 
4(3w2 - 7r’) 

(79 + wy ; 
Q=hmx &TTzG) (B-3) 

and: 

a (v,~(zl)v,$iJ(x,)) = -2-d-Z==?. 

(B.4) 

_ 2Fmd+l J 
m 
0 n2yw2 ([(I - d)coshw - (1+ d)] Q+ K+(Q) 

-(l+ coshw)Q~K~(Q))} 

and: 
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; ((%w ’ ei4(x2) -e m*c#+l)~(x2))) = -2-d-%+. 

((&)“( (l- d) K+(m) - mc K,,(m)) 

+J’ ( (1 -d) K-+(224 - 2ms K42mz)) 
D 

( 1 

(B.5) N 

+ 2~?md+’ /- ,2Fw2 ((d - l)Q=-+dQ) 
0 

+Q+K+Q))} 

Here the lines containing the 
D 

i 1 N 
symbols apply only to the case of Dirichlet 

and Neumann boundary conditions for the unaccelerated hamiltonian while the last 

line on the rhs of each equation applies only to the Unruh case. This allows us to 

write for the renormalized canonical stress tensor the result: 

(Tw)u = A gw + B ‘~,av + C PIP” Q3.6) 

where we obtain (upon throwing away the singular terms in the Unruh case): 

A = _ 2yX+m’+d J - dw 0 ?T*+w 

U( 3 i- coshw)Q* i 2P(w)(1+ coshw)] Q+Ka+(Q) (B.7) 

- [3d+5+(1-d)coshw] Q -K+(Q)} 

B = _ 2+T+ml+d - dw 

xz+w* 
P-8) 

1 +coshw] QvK?(Q) - [(I - d)(l +coshw] Q-K+(Q)} 

C=-2=+n+m’+d 

P.9) 
Ii-2 p(w)(l + 2 Q+K+a(Q)] 

We see that the Unruh vacuum produces a stress tensor matrix element which 

depends upon the usual metric, the instantaneous surface normal vector, qu and 
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the proper acceleration vector, P,,: 

gllv = diag [I, -1, . . ..-l] 

V&AVY = diag [O, 1, 0, . , 01 (B.10) 

P&SPY = diag [l, 0, . ..) O] 

This is in contrast to the case of the plane conducting wall which yields: 

-1-d 
(Tpy) = gy*-yF ; --?--. 

( > 
(2(1- d) K+(2zm) - 4nz K9(2zm)} (B.11) 

. diag (l,O, -I,..., -1) 
D 

i ) N 

with no dependence upon the timelike vector pr. We mention in passing that there 

are artifacts of the point-split regularization method. Since we have computed in an 

arbitrary space-time dimensionality, d-t 1, we can take the c + 0 limit in fractional 

dimension d and attempt to recover the dimensionally regularized results for, e.g. 

the vacuum energy density, To,. In fact, the vacuum energy is just the sum over 

zero point energies of all momentum mode oscillators: 

while the point-split result obtained above is: 

&, = -2-d-ZT+ 

If we consider the c -+ 0 limit of eq.(B.13) by standard Bessel function small ar- 

gument limits we find that eq.(B.13) goes over to the result of eq.(B.12). In the 

point-split case the singular terms of the stress-tensor are not proportional to the 

metric, but in the above limit we find that the dimensionally regularized expression 

is proportional to the metric. 

The computation of the conformal stress tensor (here we mean that which occurs 

when the scalar is conformally coupled to curvature, but we generally include a 
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mass term as well; the true tree approximation conformally invariant case occurs 

when the mass is taken to zero) involves additional operator expectation values as 

seen in eq.(2.31). This may be evaluated directly in the Rindler coordinate system 

and involves terms with the Christoffel connection symbols. Alternatively, we may 

evaluate in Minkowski space but transform to the Rindler operators (the canonical 

momentum) to evaluate the matrix element in the Unruh vacuum. We adopt the 

latter approach here. 

We require the quantity ((4’) ) h so w ere the time derivatives refer to Minkowski 

space. This must be transformed to Rindler coordinates of eq.(I.3). We note that: 

W)oo) # W>),, 
and on the time slice t = r = 0 we obtain: 

where we find: 

1 +-#,,,d+’ 
/ 

OD 
dw 

0 iTZ+WZ 
(1 + coshw)Q+K+(Q) j 

and: 

(vy) = -2-dfln=F. 

{*(E)‘( d Ky (2mr) + 2mz IL+ (2,~)) ; 
+ 2Fmmd+1 / 

a (1 + coshw)dw 

(dQ+K;(Q) :;iL.,(Q))) 

(B.14) 

(B.15) 

(B.16) 

(B.17) 

This may be assembled into a final expression for the conformal stress tensor 

given by: 
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(T:v) = AC grv + B’ vpvv + cc prPu (B.18) 

where in the Unruh case we have: 

Af =-2+T~m’+d 
J 

O” dw 
0 7r2 + d 

y+ ycoshw 
) 

QZ+2P(w)(l+coshw) 
I 

Q+%+(Q) (B.19) 

- [(d-;+2) +(d2-~+2)~~sh~] Q%+(Q)} 

Be = -2+n+ml+d 
J 

- dw 
0 ?T2fW’ 

{i [I+ coshw] Q?K?(Q)) 

(B.20) 

and: 

Ce=-2qxqml+d - J dw 

(I-=(W)(l +:OS;;;+&(Q) 

1 + coshw 
d 1 Q =%.+(Q) 

(B.21) 

For comparison we conclude with the conformal stress-tensor with the conducting 

boundary conditions: 

(2-J = ?2-dn=F (;>++ (7) IL424 

D 

( 1 
+ diag (l,O, -1, . . . . -1) 

N 

(B.22) 

It is readily verified that the trace of the preceding expression vanishes in the m + 0 

limit. 
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